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A parallel algorithm designed for widely used distributed computer clusters is developed for the real-space
self-consistent-field theory for polymers. We adopt an efficient data partition method to ensure high perfor-
mance of this parallel algorithm on clusters, which enables us to explore unknown phase structures of complex
block polymers with high accuracy and efficiency. As a benchmark test, the algorithm is applied to an ABC
linear triblock copolymer, in which the volume fractions of the two end blocks of the polymer chain are equal
�fA= fC�, to simplify the discussion. The three-dimensional microphases and phase diagram of this triblock
copolymer are investigated in detail.
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I. INTRODUCTION

Block copolymers, in which two or more chemically dif-
ferent subchains form a single molecule, are a fascinating
class of soft materials with unique structural and mechanical
properties. Interest in block copolymers has grown consider-
ably in recent years because of their ability to self-assemble
into a variety of ordered structures with domain sizes in the
nanometer range. Current experiments and theories suggest
many promising and fascinating possibilities for creating
novel nanostructures and templates based on block copoly-
mers �1–3�.

A variety of theoretical methods have been developed to
study phase behaviors of block copolymer systems. One of
the most successful theoretical frameworks for block copoly-
mers is the self-consistent-field theory �SCFT� that has its
origin in work by Edwards in the 1960s �4� and was explic-
itly adapted to treat block copolymers by Helfand in 1975
�5,6�. Currently, there are three efficient numerical ap-
proaches to solving the SCFT. The first is the spectral meth-
od which was developed by Matsen and Schick in 1994 �7�.
This method is numerically efficient for a precise computa-
tion of free energies and phase diagrams. However, it re-
quires the space group of the ordered phase as an input. This
information is typically lacking in exploratory studies of
composite block copolymer material of different architec-
tures. The second is the real-space method which was sug-
gested by Drolet and Fredrickson �8�. Their method does not
require a priori knowledge about the equilibrium morpholo-
gies. Hence it is more flexible than the spectral method and
has a greater predictive capability. However, the real-space
method is computationally intensive and requires large
memory resources. The third is the pseudospectral method
which was proposed by Tzeremes et al. �9�. This numerical
algorithm is numerically superior in stability and perfor-
mance.

In order to describe the equilibrium morphology of a
block copolymer fully, large simulation cells are needed and
numerical simulations must be implemented in the three-
dimensional �3D� space. Moreover, a large simulation cell is
also needed to eliminate the effect of boundary conditions
usually adopted in the simulation of bulk phase separation.
Hence, the computation intensity is enlarged greatly and
enormous memory is needed, which exceeds what a PC can
provide. So it is essential to develop parallel SCFT algo-
rithms for parallel computers which can provide huge com-
putation and memory resources. In recent years, computer
clusters have become major parallel processing platforms be-
cause of their high performance-to-price ratio and good scal-
ability. For computer clusters, Sides and Fredrickson devel-
oped an efficient parallel method using a pseudospectral
algorithm in which one fast Fourier transform �FFT� and one
inverse FFT �IFFT� are applied in each time step to solve a
modified diffusion equation �10�. Because arrays are divided
and distributed among computing nodes, a global array trans-
pose incurring all-to-all communications must be performed
for each FFT and IFFT. So the communication volume of
this algorithm is large, which implies that it is important for
this algorithm to run on a cluster with a high-performance
network to achieve good performance. Besides, on account
of the nature of the FFT �including the IFFT�, the perfor-
mance of any algorithm based on a FFT and/or IFFT is rela-
tively poor when all dimension lengths of the array are not
highly composite, especially for a length that has few posi-
tive divisors. Hence, for computer clusters, we determined to
develop a different parallel algorithm for the real-space
SCFT method, whose performance is not sensitive to any
dimension length of the array. It is thus especially suitable
for screening unknown structures of complex block copoly-
mers, in which the system size has to be continuously varied
to ensure that an equilibrium structure is obtained. In our
previous papers �11,12�, the morphologies and phase dia-
grams of linear and star ABC triblock copolymers were in-
vestigated systematically by a real-space implementation of
SCFT in 2D. Our study provides guidance for the design of
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microstructures in complex block copolymers. However,
some known microstructures are equivocal in 2D, for ex-
ample lamellar phases with beads inside or at the interface.
Hence, the implementation of SCFT in 3D is more suitable
for the discovery of novel assembly structures in complex
block copolymers. In this paper, our parallel algorithm is
introduced in detail for the case of ABC linear triblock co-
polymers.

The paper is organized as follows. In the next section, the
SCFT for triblock copolymers is described briefly. In Sec.
III, the parallel algorithm is introduced in detail. The 3D
phase structure and phase diagram of ABC linear triblock
copolymers are presented in Sec. IV. To simplify the discus-
sion, we have assumed that the volume fractions of the two
end blocks of the polymer chain are equal �fA= fC�. In the
last section, we draw our conclusions and make some re-
marks.

II. SCFT FOR ABC LINEAR TRIBLOCK POLYMERS

We briefly outline the formulation of the SCFT for linear
ABC triblock copolymers in this section. We use a canonical
ensemble approach and consider nC linear triblock copoly-
mer chains in a volume V. Each copolymer chain is built
from N monomers of species �=A ,B ,C. The average vol-
ume fractions of segment � in the system are f� with ��f�

=1. Following the standard procedure of the SCFT �7,8�, by
introducing external auxiliary fields ���r�, which are self-
consistent molecular fields conjugated to the collective den-
sities ���r�, and the Lagrangian multipliers ��r� for the in-
compressibility of the system, the free energy of the system
can be written as

�F

nC
= − ln�Q

V
� +

N

V
� dr��AB�A�B + �BC�B�C + �AC�A�C

− �A�A − �B�B − �C�C − ��1 − �A − �B − �C�� , �1�

where �=1 /kBT, and �A, �B, and �C are the monomer den-
sity fields normalized by the local fractions of A, B, and C,
respectively. Q denotes the partition function of the single
chain subject to the mean field ���r�, and can be expressed
as Q=	dr q�r ,s�q†�r ,s�. The polymer segment probability
distribution function q�r ,s� gives the probability of finding
segment s at position r. It satisfies a modified diffusion equa-
tion

�q�r,s�
�s

=
b2

6
�2q�r,s� − ��r�q�r,s� , �2�

where b is the statistical segment length of the polymer,
��r�=�A�s��A�r�+�B�s��B�r�+�C�s��C�r�, and ���s� is 1 if
s belongs to the block � and 0 otherwise. The initial condi-
tion is q�r ,0�=1. Similarly, a second distribution function
q†�r ,s� satisfies Eq. �2� but with the right-hand side multi-
plied by −1, and the initial condition is q†�r ,N�=1.

Minimizing the free energy in Eq. �1� with respect to �A,
�B, �C, �A, �B, �C, and � leads to the following self-
consistent field equations that describe the equilibrium mor-
phology:

�A�r� = �AB�B�r� + �AC�C�r� + ��r� , �3�

�B�r� = �AB�A�r� + �BC�C�r� + ��r� , �4�

�C�r� = �AC�A�r� + �BC�B�r� + ��r� , �5�

�A�r� =
V

NQ
�

0

fAN

ds q�r,s�q†�r,s� , �6�

�B�r� =
V

NQ
�

fAN

�fA+fB�N

ds q�r,s�q†�r,s� , �7�

�C�r� =
V

NQ
�

�fA+fB�N

N

ds q�r,s�q†�r,s� , �8�

1 = �A�r� + �B�r� + �C�r� , �9�

where ��r� is chosen to be

��r� = 	�1 − �A�r� − �B�r� − �C�r�� . �10�

Here 	 is large enough to ensure the incompressibility of the
system and the resulting density profiles and free energy
should be independent of its particular value �13�.

III. PARALLEL ALGORITHM

The numerical SCFT algorithm can be found in previous
papers �10,14�. In the numerical implementation of real-
space SCFT algorithms, the most time-consuming step is
solving the modified diffusion equation to obtain the polymer
segment probability distribution functions q�r ,s� and
q†�r ,s�. Hence, an efficient method for solving the modified
diffusion equations is essential. We adopt the Douglas-Gunn
scheme to solve Eq. �2� �15,16�, because it is not only effi-
cient but also unconditionally stable in 3D space. Moreover,
our parallel algorithm is also suitable for other implicit
schemes, such as the Crank-Nicholson and Dufort-Frankel
schemes, because all these schemes share a similar program
structure and our parallelizing technique can be applied di-
rectly.

Because the memory of a cluster is distributed physically
among all computing nodes, the arrays must be divided and
distributed among computing nodes to support large-scale
simulation. Considering that message passing over the net-
work is used to exchange information between nodes, which
means that local memory access is much faster than remote
memory access, arrays must be divided and distributed care-
fully so as to minimize expensive communications. The tech-
nology of dividing and distributing arrays is called “data
partition” and is the key factor in achieving high efficiency
for parallelizing programs on clusters. As far as the implicit
schemes for SCFT, such as the Douglas-Gunn, Crank-
Nicholson, and Dufort-Frankel schemes, are concerned, they
use a similar data access pattern, which can be abstracted and
illustrated as in Fig. 1. In each time step, the computation
scans forward and/or backward over each spatial dimension
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of the arrays and this data access pattern is called “line
sweeping computation.” The inset in the figure shows a code
fragment that scans backward along the first dimension of a,
which is defined as the x dimension. In this fragment, the i
loop iterates backward over the x dimension of a and a new
value for each a�i , j ,k� element is computed from the value
of its successors a�i+1, j ,k� and a�i+2, j ,k�. Then, we say
that there exist data dependences along the backward x di-
mension. Similarly, there exist data dependences along the
forward x dimension when scanning forward along the first
dimension of a.

Efficiently parallelizing a line sweeping computation on
clusters is difficult because data dependences exist along all
dimensions. Simple data partition methods cannot work effi-
ciently. For example, the frequently used “static block parti-
tion” divides one or two dimensions of a 3D array into sec-
tions, and distributes data blocks evenly among processors.
Under such a data partition, processor idleness will occur
when scanning along at least one of the dimensions because
of the lack of parallelism. It is possible to avoid such pro-
cessor idleness by transposing arrays as necessary so that, in
turn, each scan can be performed independently in parallel.
But the time expended on array transposes can be consider-
able. Darte �17� has proposed a method to parallelize line
sweeping computation, which can avoid processor idleness
and array transpose. But his algorithm does not trade off well
between computation cost and communication cost which
affects its efficiency. Moreover, Darte’s algorithm is very
complicated in theory. So we develop here a data partition
algorithm in which computation cost and communication
cost are well balanced and higher performance can be
achieved. In addition, our algorithm is much simpler than
Darte’s algorithm.

Our algorithm, like Darte’s, always divides a 3D array
along all its dimensions. In this manner, a 3D array is divided
into a structured 3D grid. Then all data blocks are distributed
among processors properly. In order to describe our data par-
tition algorithm clearly, we first introduce some notations
and assumptions used in this paper.

�1� The set of all positive integers is denoted as N. The set
of all positive integers not more than t, where t�N, is de-
noted as Nt= 
1,2 , . . . , t�.

�2� p stands for the number of processors involved in
parallel processing, where p�N. So Np denotes the set of all
processors’ ranks ranging from 1 to p.

�3� A�n1 ,n2 ,n3�, n1 ,n2 ,n3�N, is the 3D array to be par-
titioned, where n1, n2, and n3 represent the extents in the
first, second, and third dimensions of A, respectively, and the
array subscripts in every dimension of A begin with 1. The
manner of dividing A into data blocks can be denoted by a
3D vector �r1 ,r2 ,r3�, where ri, i�N3, represents the number
of sections into which the array A is divided in the ith di-
mension and ri�Nni. We call �r1 ,r2 ,r3� a “dividing vector.”

Then, obviously, the set R̄= 
��r1 ,r2 ,r3��ri�Nni , i�N3�
stands for the set of all possible dividing vectors for A. In
this paper we never consider the effect of load imbalance that
arises if ni cannot be divided by ri evenly.

�4� After being divided by �r1 ,r2 ,r3�� R̄, A can be viewed
as a structured 3D grid A�. Every data block in A� can be
denoted by a vector �s1 ,s2 ,s3� which identifies the data
block’s coordinate in A� with each si�Nri, i�N3. So the set
of all data blocks in A� can be expressed as the set G
= 
��s1 ,s2 ,s3��si�Nri , i�N3�. Given i�N3 and j�Nri,
H�i , j�= 
��s1 ,s2 ,s3���s1 ,s2 ,s3��G , si= j�, a subset of G, rep-
resents a set of data blocks in A� with the same ith coordi-
nate, and we call H�i , j� a slab of A�. From an inexact but
intuitional view, H�i , j� can be regarded as the jth slab along
the ith dimension of A. It is obvious that there are no data
dependences between any pair of data blocks in H�i , j� as far
as line sweeping computation is concerned, which means all
data blocks in H�i , j� can be processed in parallel.

�5� Given i�N3, j�Nri, 
ij is a function defined as
follows: given any �u1 ,u2 ,u3��H�i , j�, 
ij�u1 ,u2 ,u3�
= �v1 ,v2 ,v3�, where ∀ k (k�N3∧k� i→vk=uk∧vi
= �ui mod ni�+1). Obviously, 
ij is a bijection from H�i , j� to
H(i , �j mod ni�+1). Moreover, �u1 ,u2 ,u3� and �v1 ,v2 ,v3� are
on a line perpendicular to H�i , j� and H(i , �j mod ni�+1). So
given i�N3, j�Nri, ū�H�i , j�, and v̄�H(i , �j mod ni�+1),
there exist both forward and backward data dependences be-
tween ū and v̄ if and only if v̄=
ij�ū�. Considering that
H�i , j� and H(i , �j mod ni�+1) are two neighboring slabs,
there will be communication if ū and v̄ are distributed to
different processors.

�6� B�r1 ,r2 ,r3� is a 3D array used to record the owner of
every data block in A�, and array subscripts in every dimen-
sion of B begin with 1. For any data block s̄
= �s1 ,s2 ,s3��G, the value of B�s̄�, an abbreviation of
B�s1 ,s2 ,s3�, indicates the rank of the processor owning s̄. It
is manifest that distributing data blocks in G among p pro-
cessors is equivalent to assigning every element of B a value
belonging to Np.

�7� When scanning along the ith �i�N3� dimension, no
matter whether forward or backward, we suppose the number
of successors that are used to compute an element of A is a
constant, which is indicated as Li.

�8� Let V=n1�n2�n3, Vi=n1�n2�n3 /ni, and NBi=r1
�r2�r3 /ri, where i�N3; then V stands for the number of
elements in A, Vi gives the number of elements in any plan
of A vertical to the ith dimension, and NBi gives the number
of data blocks belonging to any H�i , j� where j�Nri.

�9� The computation cost spent on calculating every ele-
ment of A during scanning along any dimension, no matter
whether forward or backward, is assumed to be a constant
Kcomp.

FIG. 1. Sketch of 3D implicit schemes for SCFT.
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�10� The communication cost spent on transmitting an
element of A between two different processors is supposed to
be a constant Kcomm. This hypothesis is true for most modern
high-performance cluster networks such as Myrinet, QsNet,
and Infiniband when the data volume of every communica-
tion is not too small to ignore the overhead of additional
computation associated with the communication.

�11� The equation T=Tcomp+Tcomm is always true, where
T, Tcomp, and Tcomm, respectively, represent the total time, the
time spent on computation, and the time spent on communi-
cation, when scanning along every dimension of A once, no
matter whether forward or backward.

Given any dividing vector r̄= �r1 ,r2 ,r3�� R̄, our algo-
rithm distributes all data blocks once for all in a way ensur-
ing that any slab H�i , j�, i�N3, j�Nri, can be divided ex-
actly into x subsets, denoted as H1�i , j�, H2�i , j�, . . ., and
Hx�i , j�, which possess the following four characteristics:

�1� ∀y , ∀ ū1 , ∀ ū2 �y�Nx∧ ū1�Hy�i , j�∧ ū2�Hy�i , j�
∧ ū1� ū2→B�ū1��B�ū2��;

�2� ∀y , ∀ ū1 , ∀ ū2 �y�Nx∧ ū1�Hy��i , j�∧ ū2�Hy��i , j�
∧ ū1� ū2→B�ū1��B�ū2��, where for any y�Nx, Hy��i , j�
= 
�v̄�v̄=
ij�ū� , ū�Hy�i , j��;

�3� ∀ū �ū�H�i , j�→B�ū��B(
ij�ū�)�;
�4� 
H1�i , j�
= 
H2�i , j�
= ¯ = 
Hx−1�i , j�
= p, where for

any set X, 
X
 means the number of elements in X.
The characteristic 1 ensures that all data blocks in any of

the x subsets of H�i , j� are assigned to different processors,
and characteristic 2 ensures the same thing for the corre-
sponding x neighboring subsets in H(i , �j mod ni�+1). Char-
acteristic 3 makes sure that any pair of neighboring data
blocks along the ith dimension are assigned to different pro-
cessors, so communications will occur between them when
the program scans along the ith dimension, no matter
whether forward or backward. These three characteristics to-
gether ensure two things. First, computations in both H�i , j�
and H(i , �j mod ni�+1) can be divided into x steps. During
the kth step, k�Nx, the data blocks in Hk�i , j� or Hk��i , j� can
be handled in parallel. Second, communications between
H�i , j� and H(i , �j mod ni�+1) can be divided into x steps
too. During the kth step, k�Nx, communications between
Hk�i , j� and Hk��i , j� are dealt with, and every processor sends
and receives messages at most once each. This kind of com-
munication scheme can disperse message passing and reduce
network congestion as much as possible. Characteristic 4
makes sure that every Hk�i , j� and its neighbor Hk��i , j�,
k�Nx, contain as many data blocks as possible, which
makes x equal to its minimum �NBi / p�. The combination of
these four characteristics has two properties. On the one
hand, all data blocks are distributed as evenly as possible and
every processor is kept as busy as possible. This property
leads to minimized computing time, and we call it “load
balance.” On the other hand, the communications between
any two adjacent slabs are accomplished in minimal steps,
and in every step the number of processors involved in com-
munication is maximized, while communications are dis-
persed as much as possible. This property can minimize
communication time, and we call it “neighboring communi-
cation.” In sum, the data distribution scheme satisfying these

four characteristics can maximize parallelism and minimize
communication simultaneously. In return, high parallel pro-
cessing efficiency is guaranteed. The details of the method
for distributing data blocks that our algorithm adopts will be
discussed later. Taking a scan forward along the ith �i�N3�
dimension as an example, the scan could be evaluated by ri
computation phases and ri communication phases in se-
quence. During the jth, j�Nri, computation phase, data
blocks in H�i , j� are parallel processed in �NBi / p� steps as
described before. Following the jth �j�Nri� computation
phase is the jth �j�Nri� communication phase, in which
only a boundary layer consisting of one or more planes of A
is transmitted, and all communications are handled in
�NBi / p� steps as described before. A similar situation occurs
when scanning along the ith �i�N3� dimension backward.

Now we describe how to find the optimal data partition in
our algorithm. Suppose the dividing vector r̄ is determined
and a data distribution satisfying both the load balance and
neighboring communication properties is applied, it is easy
to deduce that Tcomp, Tcomm, and T can be calculated as

Tcomp = 2KcompV �
i�N3

��NBi/P�/NBi� , �11�

Tcomm = 2Kcomm �
i�N3

��ViLiri��NBi/P�/NBi� , �12�

T = Tcomp + Tcomm

= 2 �
i�N3

��KcompV + KcommViLiri��NBi/P�/NBi� . �13�

Obviously, the optimal data partition is the one that can mini-
mize T. In Eq. �13�, Kcomp, Kcomm, V, Vi, and Li are fixed,
when A, p, and the cluster used for parallel processing are
determined. Then r̄ is the only factor that affects the perfor-
mance, since NBi and NB are both determined by r̄. On the
one hand, reducing ri, i�N3, can bring down communica-
tion cost and result in better performance. On the other hand,
given any i�N3, the minimum of �NBi / p� /NBi, i.e., 1 / p, can
be achieved when NBi can be divided by p exactly, which
means every processor is assigned the same number of data
blocks for any slab along the ith dimension. Given any
i�N3, if NBi can be divided by p exactly, then we say there
exists a “perfect load balance” along the ith dimension.

For a fixed p, it is subtle to find the optimal r̄. From one
point of view, suppose i , j ,k�N3∧ i� j∧ i�k∧ j�k; al-
though reducing the values of rj and rk can lead to less com-
munication cost so as to be helpful to performance, it can
also bring down NBi to a value less than p and make
�NBi / p� /NBi equal to 1 /NBi, which is greater than the mini-
mum, say, 1 / P; as another point of view, despite the fact that
it is beneficial to performance to make sure that NB1, NB2,
and NB3 can all be divided by P evenly at the same time, this
characteristic does not ensure a minimized communication.
Thanks to the performance model expressed by Eq. �13�, we
can use a simple exhaustive enumeration method to find the
optimal dividing vector. Suppose �r1 ,r2 ,r3� is a dividing vec-
tor with r1� p∧r2� p∧r3� p; it is easy to deduce that the
performance of �r1 ,r2 ,r3� is not superior to �p , p , p� accord-
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ing to Eq. �13�. So the times of enumeration before finding
the optimal dividing vector are not more than p3, which is
bearable considering that p is normally less than 104 nowa-
days. Actually, in our algorithm, we take only dividing vec-
tors that ensure perfect load balance along two of three di-
mensions as candidates for the final dividing vector. This
kind of searching method can be justified by the following
three facts, even though it can shrink the searching space a
lot so as to greatly reduce searching time. �1� Dividing vec-
tors that can provide three-dimensional perfect load balance
are good candidates undoubtedly. �2� Only considering divid-
ing vectors with perfect load balance along all dimensions
cannot ensure finding the optimal dividing vector. For ex-
ample, suppose the processor number is 15 and A is a cube,
we find that �3,5,15� is the best dividing vector among those
possessing three-dimensional perfect load balance under the
direction of Eq. �13�. But as far as performance is concerned,
�3,5,15� may not be superior to �3,5,3�, which reduces com-
munications dramatically at the cost of one-dimensional per-
fect load balance. �3� Dividing vectors with only one-
dimensional perfect load balance or without any perfect load
balance have poor parallelism. In a word, the dividing vec-
tors with at least two-dimensional perfect load balance are
good candidates for the final dividing vector.

When the final dividing vector is determined, we can as-
sign data blocks shaped by the selected dividing vector to
processors, which is equivalent to assigning every element of
B a value belonging to Np, as described previously. Given
any �r1 ,r2 ,r3� with �NBi�p where i�N3, the algorithm �writ-
ten in C programming language style; see Ref. �18�� can
assign processors in a way satisfying the load balance and
neighboring communication properties at the same time. The
algorithm for any �r1 ,r2 ,r3� with �NB2�p or �NB3�p is similar.
The proof of the correctness of this algorithm is not difficult
but lengthy, and we omit it due to space constraints. Taking
the dividing vector �3,3,3� as an example, Fig. 2 shows the
effect of processor assignment when the algorithm described
in Ref. �18� is applied.

With the above data partition, a serial SCFT algorithm can
be adapted to parallel processing. We now describe our par-
allel algorithm. First, an initial guess for the static field ���r�
is obtained using a standard random number generator, and
the initial value of the potential field ��r� is set to ��r�
= ��A�r�+�B�r�+�C�r�� /3. These processes of initializing
fields are performed concurrently. Thereafter, using the
Douglas-Gunn method and the alternating-direction implicit
scheme �16�, the modified diffusion equations of q�r ,s� and
q†�r ,s� are solved on each processor with the given initial
and boundary conditions. Certainly, interprocessor commu-
nication is required and the communication cost of this step
occupies most of the whole communication time. But the
communication of data between processors is only boundary
data transfer. Then, the monomer densities ���r� conjugated
to ���r� are evaluated with q�r ,s� and q†�r ,s�. This step
requires both local computation and interprocessor commu-
nication. Following the work of Drolet and Fredrickson
�8,19�, the potential fields ���r� and ��r� are updated. Only
local computation is implemented in this step. Through local
computation and three reduction operations, the free energy

of the system is obtained. With the new fields ���r� and ��r�,
the procedure returns to calculate the polymer segment prob-
ability distribution function, and this is repeated until the free
energy change at each iteration is reduced to 10−4. To avoid
any influence of the simulation cell size on the final mor-
phology, each minimization of the free energy is further it-
erated with respect to the cell size to obtain the equilibrium
structure.

In all the calculations, the chain length of the polymers is
fixed to be N=100. The lattice units are chosen to be dx
=dy=a, where a is the statistical length of the polymer seg-
ment and the discretization parameter along the chain con-
tour length 
s is set to a.

IV. RESULTS AND DISCUSSION

A. Performance of the parallel algorithm

The validity and performance of the parallel algorithm
were tested on a Beowulf cluster at the Supercomputing Cen-
ter of Fudan University. After massive tests, we confirmed
that the error of numerical results �i.e., ���r�, ���r�, q�r ,s�,
and q†�r ,s�� between the serial and parallel algorithms is less
than 10−9. Hence, the parallel algorithm is valid and accurate.
The performance of the parallel SCFT algorithm is illustrated
in Fig. 3 for 3D systems. The speedup is the CPU time ratio
of the parallel algorithm to the serial algorithm. CPU time
includes both the computation and communication time. The
tests are performed on four system sizes, 323, 483, 643, and
803. Ideally, the efficiency of a parallel algorithm is 1.0 and
the speedup is equal to the number of CPUs used, which is
denoted by the open stars in Fig. 3. The larger the size of a
simulation cell, the better the efficiency of the parallel algo-
rithm. For the larger simulation cells �643 and 803�, our al-
gorithm can obtain the ideal speedup state for eight CPUs.
As shown in Fig. 3, the speedup increases continuously with

FIG. 2. Effect of processor assignment after the algorithm in
Ref. �18� is applied. Each parallelogram indicates one data block,
and the integer within each parallelogram indicates the rank of the
processor that owns it. In this figure, x, y, and z dimension corre-
spond to the first, second, and third dimension of the array to be
partitioned.
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increasing CPU number. When the CPU number increases to
a critical number, the speedup barely changes with further
increase in the CPU number and the efficiency becomes
worse. The critical number is different for different sizes of
the simulation cell. Finally, the algorithm performs poorly in
some cases. Meanwhile, the performance is also different
with different sizes of the cell. For smaller systems �i.e.,
323�, the performance is degraded when the CPU number is
more than 16. For the larger simulation cells �i.e., 643 and
803�, our parallel algorithm is more efficient. The computa-
tion CPU time decreases with increasing CPU number. But
the proportion of communication CPU time increases simul-
taneously. Hence, there exists an optimum ratio of
communication-to-computation CPU time for a specific cal-
culation system. As shown in Fig. 3, there is an optimum
CPU number for a special simulation cell. For example, the
optimum CPU number is about nine for the smaller system
�323�. In addition, our algorithm avoids the main drawback
of an algorithm based on the FFT when applied to arrays
where the lengths of all dimensions are not highly compos-
ite, because of the nature of the FFT. This characteristic is
important to search for new microphase structures of block
copolymers in a real-space simulation, since the system size
has to be continuously varied to avoid its influence on the
final morphology.

B. Morphology of ABC linear triblock copolymer with fA= fC

ABC triblock copolymers offer the potential to create
nanoscale morphologies with interesting and useful chemical
and physical properties. However, cataloging the expensive
ABC parameter space, relative to AB diblocks, presents a
daunting task for experimentalists and theoreticians alike.
We hope this situation can be improved by the application of
our parallel algorithm. As a benchmark test, in this paper, we
report only a special case in which the volume fractions of
the two end blocks of the ABC linear triblock copolymer are
equal �fA= fC�. We focus on the variation of morphology

with volume fraction of the middle block B �fB�. For large
simulation cells, a globally uniform structure is difficult to
obtain, and the defect forms easily and is difficult to remove.
Hence, we choose smaller system sizes �263−323� to dem-
onstrate the ability of the parallel algorithm.

First, we define two ratios of the interaction parameters as
R1=�AB /�AC and R2=�BC /�AC, respectively. Then the ABC
linear triblock copolymers can be classified into four differ-
ent classes according to the relative strengths of the interac-
tion energies: �1� R1=R2=1, �2� R1�1, R2�1, �3� R1
�1, R2�1, and �4� R1�1, R2�1. If the binary interaction
parameters �AB, �BC, and �AC are different from each other,
different sequences of blocks �A-B-C, B-C-A, C-A-B� will
lead to different phase behaviors for the system, even with
the same composition parameters. Once the relative strength
of the interaction parameters is specified, the morphology is
uniquely determined by the composition of the system.
Hence, we can facilitate examining the influence of the se-
quences and relative strengths of the interaction energy using
the ratios of the interaction parameters.

1. R1=R2=1

For this case, the morphology mainly depends on copoly-
mer compositions due to equal binary interactions between
each block. In our case, the volume fraction of the middle
block �fB� is a key factor in determining the morphology. We
set �ABN=�ACN=�BCN=35, which is in the experimentally
interesting intermediate segregation regime. The one-
dimensional phase diagram for varying fB is shown in Fig. 4.
In the calculation of the phase diagram, the increment of fB
is set to 0.01 near the phase boundary and is 0.05 in other
cases.

As shown in Fig. 4, with the volume fraction of the
middle block �fB� increasing from 0.0 to 1.0, the following
ordered morphologies appear successively: two-domain
lamellae �LAM2�→three-domain lamellae �LAM3�→two in-
terpenetrating tetragonally arranged cylinder phases �TET2�

FIG. 3. Performance of parallel algorithm. Speedup is the CPU
time ratio of the parallel to the serial algorithm. CPU time includes
both the computation and communication time. The computation is
performed in three-dimensional space and the system size is 323,
483, 643, or 803.

FIG. 4. �Color online� One-dimensional phase diagram for fB.
The chain length N=100 and the Flory-Huggins interaction param-
eters are set to be �ABN=�BCN=�ACN=35, fA= fC. Three different
colors, blue �black�, green �light gray�, and red �dark gray�, are
assigned to A, B, and C blocks, respectively.
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→spherical domains in the CsCl-type structure �sphere�
→disorder. The same morphologies have been reported in
previous experimental studies �20–22� and theoretical pre-
dictions �23,24�. When fB=0, the triblock copolymer �ABC�
is reduced to the diblock copolymer �AC� with fA= fC in our
case. The morphology is always LAM2 with the same do-
main sizes of the two species �DA=DC�. As the volume frac-
tion fB increases, but fB�0.1, most of the middle blocks B
are enriched at the interfaces between the two end blocks �A
and C�. However, for fA�0.1 or fC�0.1, the minority com-
ponent A or C dissolves in the lamellae of the middle block
B in the same system conditions �11�. The two ends of the
middle block B are connected with either end of the block A
or C. Therefore, the middle block B can only distribute near
the interfaces of A /C. When 0.1� fB�0.5, the LAM3 phase
is obtained. The middle block B forms a single domain with
its size increasing with fB. For a symmetric triblock copoly-
mer �fA� fB� fC�, the LAM3 phase with two characteristic
lamellar widths is observed, i.e., DA�DC�2DB. Tang et al.
also found the same morphology with the real-space method
of the SCFT in 2D �11�. The same morphology was also
obtained by Matsen using the Fourier space implementation
of SCFT �24� and Zheng and Wang using the strong segre-
gation theory �25�. When fB increases to 0.60, the TET2 mor-
phology appears for the linear ABC block copolymer instead
of the LAM3. This stable phase is composed of A and C
cylinders tetragonally arranged within the B matrix and there
are no internal A /C interfaces. This structure arises from the
special characteristics of triblock copolymers. A similar
structure was found in experimental �20,22,27� and theoreti-
cal results �24�. As fB further increases, the system exhibits
the spherical phase which contains spherical domains in the
CsCl-type structure. Similarly to the TET2 phase, the A-rich
and C-rich spheres must be placed close together because the
B middle block has to bridge them. The same morphology
was also predicted by Zheng and Wang using the strong seg-
regation theory �26�. In addition, a hexagonal lattice phase
�hex� is also a stable phase in Tang et al.’s work �11�. How-
ever, it is not found in our case; it may be a dimensional-
dependent structure.

2. R1�1, R2�1

In this case, interactions between the end and middle
blocks �A-B and B-C� are more unfavorable than those be-
tween the two end blocks �A-C�, thus it is possible for A /C
interfaces to form.

a. �ABN=50, �ACN=20, �BCN=50. In Fig. 5, the one-
dimensional phase diagram with varying fB is shown for
�ABN=50, �ACN=20, and �BCN=50 and thus R1=2.5 and
R2=2.5. As shown in Fig. 5, with the volume fraction of the
middle block �fB� increasing from 0.0 to 1.0, the following
ordered morphologies appear successively: LAM2→per-
forated lamellae �PL�→LAM3→network→sphere→disorder.

For middle blocks B forming the minority species �fB

�0.1�, most of them are enriched at the interfaces between
the two majority components �A and C blocks�. The LAM2
phase is formed when DA=DC. When fB�0.1, B blocks
form a single domain. With �AB��BC��AC, it is possible
for the A /C interface to be formed, although there is no

chemical junction between A and C blocks. Therefore, per-
forated lamellae appear instead of LAM3 within a certain
range of fB �0.15� fB�0.25�. As fB further increases, the
system is trapped in LAM3. When fB�0.55, the end block
�A or C� forms a network structure within the B matrix and
thus the interpenetration network structure appears. As
shown in Fig. 5, a double-gyroid network occurs about fB
=0.6. In our case, the two end blocks �A and C� can mix
together forming a domain in the B matrix when fB�0.7. A
single network structure appears about fB=0.75. Meanwhile,
near fB=0.8, the spherical phase is formed by mixed A and C
blocks. When fB�0.85, the disordered state is stable.

b. �ABN=60, �ACN=20, �BCN=60. The interaction en-
ergy �N is significant in determining the morphology of tri-
block copolymers in the weak and intermediate segregation
regions �25�. In this section, both �ABN and �BCN are in-
creased from 50 to 60 to study the influence of �N on the
morphology.

As shown in Fig. 6, the morphology becomes more inter-
esting and fascinating. With the volume fraction of the
middle block �fB� increased from 0.0 to 1.0, the following
ordered morphologies appear successively: LAM2→lamellar
phase with beads at the interface �LAM+BD�→lamellar
phase with cylinders at the interface �LAM+C�→PL
→LAM3→network→sphere→disorder.

Compared to Fig. 5 �with lower �ABN and �BCN�, LAM
+BD and LAM+C occur between the LAM2 and PL phases.
When fB is about 0.1, the B block forms spherical domains
with hexagonal arrangement located at the A /C interfaces.
While fB increases to 0.12, the system tends to exhibit an-
other morphology, A and C lamellae with cylinder domains
formed by B blocks located at the A /C interfaces. Stadler et
al. found these two structures in triblock poly�styrene-b-bu-
tadiene-b-methylmethacrylate� �PS-PB-PMMA� �28–31�. In
this case, the interactions between the end and middle blocks
�PS-PB and PB-PMMA� are more unfavorable than that be-
tween the two end blocks �PS-PMMA�, which falls into the
class we investigated here. When the content of PB comes to

FIG. 5. �Color online� One-dimensional phase diagram for fB.
The chain length N=100 and the Flory-Huggins interaction param-
eters are set to be �ABN=50, �ACN=20, �BCN=50, fA= fC. Three
different colors, blue �black�, green �light gray�, and red �dark
gray�, are assigned to A, B, and C blocks, respectively.
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6 wt %, the LAM+BD phase was obtained. As the content
of PB increased to 17 wt %, the LAM+C phase was the
stable structure. In addition, the two morphologies were also
predicted by Ko et al. using molecular dynamics simulation
�32�. In our case, LAM+BD and LAM+C exist in a very
limited region. One can expect these two morphologies to
exist in a larger region when �ABN and �BCN further in-
crease; in addition, the range of the stable, well-separated
LAM3 phase is broadening.

3. R1�1, R2�1

In this case, we set �ABN=20, �ACN=50, �BCN=50.
Therefore, R1=0.4 and R2=1.0. The interaction energy be-
tween the two blocks A and B is more favorable than that of
A-C or B-C. Then it is unfavorable for the A /C interface to
form.

As shown in Fig. 7, with the volume fraction of the
middle block �fB� increasing, the following ordered mor-
phologies appear successively: LAM2→LAM3→PL→TET2
→spherical domains in the CsCl-type structure �sphere�
→spherical domains formed by C blocks �sphere�→dis-
order.

The triblock copolymer in Fig. 7 can be obtained by sim-
ply changing the block sequence of the triblock copolymer
from A-B-C to A-C-B in Fig. 5. The different phase behav-
iors observed in Figs. 5 and 7 illustrate the effect of the block
sequence in linear triblock copolymers when the interaction
energies are not equal. Compared to Fig. 5, the LAM3 mor-
phology appears for the linear ABC block copolymer instead
of the PL phase when the volume fraction of the B block is in
the range of 0.15–0.25. As fB further increases, B blocks tend
to form a continuous phase. When fB is about 0.55, a special
perforated lamellae phase occurs, in which the cross section
perpendicular to the lamellae is similar to the morphology of
lamellae with beads inside �LAM+BD-I� in 2D predicted by
Tang et al. �11�. The domain of the C block is perforated by
those of A and B blocks. Because it is unfavorable for the
A /C interface to form, the A domain is surrounded by the B

domain. Zheng and Wang �26� and Tang et al. �11� also
predicted a core-shell hexagonal �CSH� phase in a similar
system. The CSH phase was observed in a poly�styrene-
b-isoprene-b-2-vinyl-pyridine� melt �33�. However, this
phase is not found in our case. In their cases, the A-C inter-
action is slightly larger than either A-B or B-C interactions
and the system tends to form the CSH phase with no A /C
interface because it is more favorable energetically. In our
case, �ACN=�BCN=50 and our system is between F0 and F1

�F0 and F1 are defined by Tyler et al. in �34��. Hence, the
CSH phase is replaced by the special perforated lamellae
phase because the curvature energy is unfavorable.

When fB is equal to 0.60, the quasi-TET2 morphology is
obtained. This structure arises from the special characteris-
tics of triblock copolymers and avoids the A /C interface.
The spherical domains in the CsCl-type structure occur when
fB increases to 0.65. As fB further increases, the A block
mixes into the B matrix and the C block forms spherical
domains arranged in the B matrix. When fB�0.85, a disor-
dered phase is obtained.

4. R1�1, R2�1

Figure 8 presents the one-dimensional phase diagram for
�ABN=20, �ACN=40, and �BCN=60, i.e., R1=0.5 and R2
=1.5. The system prefers the morphology that reduces the
unfavorable contacts between the B and C blocks as well as
increases the interfacial contacts between the A and B blocks.
Compared to the case of R1�1, R2�1, the values of the
interaction energy of these two cases are close. Therefore,
the sequence of the ordered morphologies in Fig. 8 is the
same as that in Fig. 7; however, the same morphology occurs
with different fB. For example, the special PL phase appears
near fB=0.5 and TET2 is formed in a larger region of fB. In
order to decrease the interfacial energy between the two end
blocks �A and C�, the special PL phase is favorable. Hence,
we believe it is a kind of universal morphology in triblock
copolymers with similar interaction parameters.

FIG. 6. �Color online� One-dimensional phase diagram for fB.
The chain length N=100 and the Flory-Huggins interaction param-
eters are set to be �ABN=60, �ACN=20, �BCN=60, fA= fC. Three
different colors, blue �black�, green �light gray�, and red �dark
gray�, are assigned to A, B, and C blocks, respectively.

FIG. 7. �Color online� One-dimensional phase diagram for fB.
The chain length N=100 and the Flory-Huggins interaction param-
eters are set to be �ABN=20, �ACN=50, �BCN=50, fA= fC. Three
different colors, blue �black�, green �light gray�, and red �dark
gray�, are assigned to A, B, and C blocks, respectively.
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V. CONCLUSIONS

We have developed a parallel algorithm for real-space
SCFT simulation. The parallel algorithm is based on the
Douglas-Gunn scheme, which is adopted in the numerical
algorithm of SCFT to solve the modified diffusion equations.
Our algorithm is also suitable for other implicit schemes,
such as the Crank-Nicholson scheme, Dufort-Frankel
scheme, etc. For the widely used parallel clusters with dis-
tributed memory, the parallel algorithm is efficient, espe-

cially for larger simulation cells. Our algorithm avoids the
main drawback of an algorithm based on the FFT when ap-
plied to arrays where the lengths of all dimensions are not
highly composite, because of the nature of the FFT. There-
fore the simulation cell size can be continuously varied in the
present simulation, which is important in searching for new
microphase structures of complex block copolymers.

As a benchmark test, the special case of an ABC linear
triblock copolymer with equal volume fractions of the two
end blocks �fA= fC� was investigated by the present parallel
SCFT simulation. The ordered phases of the ABC linear tri-
block copolymer depend not only on the composition and the
degree of segregation, but also on the sequence of the blocks.
Compared to previous serial SCFT algorithms, which are
limited to studying 2D structures, the parallel SCFT gives
rise to intrinsic 3D structures such as perforated lamellae and
network phases. We expect the parallel algorithm developed
in this paper to boost the discovery of novel assembly struc-
tures in complex block copolymers.
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FIG. 8. �Color online� One-dimensional phase diagram for fB.
The chain length N=100 and the Flory-Huggins interaction param-
eters are set to be �ABN=20, �ACN=40, �BCN=60, fA= fC. Three
different colors, blue �black�, green �light gray�, and red �dark
gray�, are assigned to A, B, and C blocks, respectively.
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